(4x)^2+(3x)^2=100

Simple and best practice solution for (4x)^2+(3x)^2=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x)^2+(3x)^2=100 equation:



(4x)^2+(3x)^2=100
We move all terms to the left:
(4x)^2+(3x)^2-(100)=0
We add all the numbers together, and all the variables
7x^2-100=0
a = 7; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·7·(-100)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*7}=\frac{0-20\sqrt{7}}{14} =-\frac{20\sqrt{7}}{14} =-\frac{10\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*7}=\frac{0+20\sqrt{7}}{14} =\frac{20\sqrt{7}}{14} =\frac{10\sqrt{7}}{7} $

See similar equations:

| -11w-w=-12 | | -11w−w=-12 | | 6+x/6=8 | | 11x+12x=1,18 | | X+20=3(x+6 | | -n(n-8)=-2 | | r+1+6r=-20 | | 2(1-3x)-3(x+2)=-5(x-4) | | 5(3x-1)=44 | | 4(4n+6)+5(5n-12=9 | | 3x^2+7x+2x-4=28 | | 6(x-15)=-48 | | 15=1/3(6x-21) | | (x+4)^2=12 | | -3x-4x=15 | | 5(3-x)=-(3+x) | | 100=5x+(5)*6x | | 233=-x+126 | | 100=0.5X+(0.5)*0.6x | | -y+185=80 | | 15=3/4x-6 | | 7+5u=17 | | 8x+4x-35=0 | | 2x/6=5/12+x/8 | | -4-3y=12 | | 7x=2x-40 | | 180=x+2x-12 | | -x+3=3x+15 | | 6x+39/9=3 | | 0=x2-4x-60 | | 8^4x=16 | | 3/2x=1/8 |

Equations solver categories